On the Polyhedrality of Closures of Multibranch Split Sets and Other Polyhedra with Bounded Max-Facet-Width

نویسندگان

  • Sanjeeb Dash
  • Oktay Günlük
  • Diego A. Morán R.
چکیده

For a fixed integer t > 0, we say that a t-branch split set (the union of t split sets) is dominated by another one on a polyhedron P if all cuts for P obtained from the first t-branch split set are implied by cuts obtained from the second one. We prove that given a rational polyhedron P , any arbitrary family of t-branch split sets has a finite subfamily such that each element of the family is dominated on P by an element from the subfamily. The result for t = 1 (i.e., for split sets) was proved by Averkov (2012) extending results in Andersen, Cornuéjols and Li (2005). Our result implies that the closure of P with respect to any family of t-branch split sets is a polyhedron. We extend this result by replacing split sets with polyhedral sets with bounded max-facet-width as building blocks and show that any family of such sets also has a finite dominating subfamily. This result generalizes a result of Averkov (2012) on bounded max-facet-width polyhedra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets

Split cuts are cutting planes for mixed integer programs whose validity is derived from maximal lattice point free polyhedra of the form S := {x : π0 ≤ π T x ≤ π0 + 1} called split sets. The set obtained by adding all split cuts is called the split closure, and the split closure is known to be a polyhedron. A split set S has max-facet-width equal to one in the sense that max{π x : x ∈ S}− min{π...

متن کامل

On the polyhedrality of cross and quadrilateral closures

Split cuts form a well-known class of valid inequalities for mixed-integer programming problems. Cook, Kannan and Schrijver (1990) showed that the split closure of a rational polyhedron P is again a polyhedron. In this paper, we extend this result from a single rational polyhedron to the union of a finite number of rational polyhedra. We then use this result to prove that cross cuts yield closu...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

Homomorphisms on Topological Groups from the Perspective of Bourbaki-boundedness

In this note we study some topological properties of bounded sets and Bourbaki-bounded sets. Also we introduce two types of Bourbaki-bounded homomorphisms on topological groups  including, n$-$Bourbaki-bounded homomorphisms and$hspace{1mm}$ B$-$Bourbaki-bounded homomorphisms. We compare them to each other and with the class of continuous homomorphisms. So, two topologies are presented on them a...

متن کامل

The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, Kannan and Schrijver who showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017